
www.rutgersqfc.com

1

Intro to Dynamic 
Programming

Fall 2020



www.rutgersqfc.com

2

Definition

A mathematical optimization and computer programming method used to SIMPLIFY 
complicated problems into SMALLER SUBPROBLEMS, and solving those in a 
recursive manner (does not necessarily mean using recursion).

• If sub-problems can be nested recursively inside larger problems, then Dynamic 
Programming can be used

• Dynamic Programming is used to improve time efficiency



www.rutgersqfc.com

3

Two Conditions

1) Overlapping subproblems: we need to solve the same subproblem over and over 
again

2) Optimal Substructure: we can solve the problem by breaking it down into 
smaller problems

This will make sense after a few examples.



www.rutgersqfc.com

4

Example 1: Longest Common Subsequence

Problem: Given two sequences find the length of the longest subsequence present in 
both of them.

A subsequence is a sequence that appears in relative order but is not necessarily 
contiguous

What is the longest common subsequence of:

1. ABCDEFG 1. AGGTAB
2. ABXDFG 2. GXTXAYB



www.rutgersqfc.com

5

Example 1 (contd.)

What is the longest common subsequence of:

1. ABCDEFG 1. AGGTAB
2. ABXDFG 2. GXTXAYB

Common subsequences include:

A, B, D, F, G, AB, DF, DFG, ABD, ABDFG

Longest common subsequence: ABDFG

Longest common subsequence: GTAB



www.rutgersqfc.com

6

Example 1 - Brute Force

Find LCS of the input string “AGGTAB” (call this L1 and of length m) and “GXTXAYB” 
(call this L2 and of length n)

How to solve this?

Brute Force Approach

• Each character has 2 options: included in the subsequence or not
• Find all subsequences of each sequence - about 2^m subsequences per sequence
• Compare each subsequence with each subsequence of other sequence - 2^n 

comparisons per subsequence
• Total running time 2^m*2^n = O(2^(m+n))

That is the brute force and has an exponential running time. 



www.rutgersqfc.com

7

Example 1 (contd.)

Where does one start:

• Beginning of each array
• End of each array

There can be exactly two cases by starting at the end. Either the last characters 
match or the last characters do not match. 

• Case 1 - last characters match (L1[m-1] == L2[n-1]): Increment the LCS by 1 and 
do LCS on L1[m-2] and L2[n-2]

• Case 2 - last characters do not match (L1[m-1] != L2[n-1]): Find the max of 
LCS(L1[m-1], L2[n-2]) and LCS(L1[m-2], L2[n-1])



www.rutgersqfc.com

8

Example 1: Recursion

We did it, right?



www.rutgersqfc.com

9

Recursion Tree

Example recursion tree using previous rules using the sequences “AXYT” and
“AYZX”



www.rutgersqfc.com

10

Example 1: Running Time

Worst case running time is O(2^n), which is exponential time. This is similar to brute 
forcing everything. This occurs when every single character of L1 and L2 are 
mismatched (LCS length is 0). Additionally, we solved the same recursion problem 
multiple times.

Also, there is no way we can find out what the LCS is, we can just figure out the LCS 
length. 

There has to be a better way!



www.rutgersqfc.com

11

Memoization - Important DP Technique

Note that we were solving some subproblems over and over again (overlapping 
subproblems). In the recursion tree a few slides ago, we solved the same problem 2 
times (highlighted in green).

A better idea is to just solve the problem once, write down the solution, and 
whenever we are faced with the same subproblem, just spit out the answer. This is 
exactly what memoization does: “solve once, remember forever”.



www.rutgersqfc.com

12

Top-Down Approach



www.rutgersqfc.com

13

Evaluation

We managed to eliminate solving the same tree multiple times. 

However, there is an even better way, called the bottom-up iterative method that is 
even more efficient. 



www.rutgersqfc.com

14

Iterative Matrix Method

Phi represents a subsequence of length 0

LCS ɸ A G G T A B

ɸ 0 0 0 0 0 0 0

G 0

X 0

T 0

X 0

A 0

Y 0

B 0



www.rutgersqfc.com

15

Matrix (contd.)

LCS ɸ A G G T A B

ɸ 0 0 0 0 0 0 0

G 0 0 1 1 1 1 1

X 0 0 1 1 1 1 1

T 0

X 0

A 0

Y 0

B 0

If the letters match, then the number is 1+the top left diagonal. Else, it is the greater of the top and left



www.rutgersqfc.com

16

Approach

If the last characters match:

• LCS[i][j] = LCS[i-1][j-1] + 1

If the last characters don’t match:

• LCS[i][j] = max(LCS[i-1][j], LCS[i][j-1])



www.rutgersqfc.com

17

Final Matrix

LCS ɸ A G G T A B

ɸ 0 0 0 0 0 0 0

G 0 0 1 1 1 1 1

X 0 0 1 1 1 1 1

T 0 0 1 1 2 2 2

X 0 0 1 1 2 2 2

A 0 1 1 1 2 3 3

Y 0 1 1 1 2 3 3

B 0 1 1 1 2 3 4



www.rutgersqfc.com

18

Finding Longest Subsequence

Start at bottom right corner and check what is up and left. If current position is unequal to both, then it’s part of the LCS and 
move up-left diagonally. Else, move to the position that’s the same as the current position (either up or left)

LCS ɸ A G G T A B

ɸ 0 0 0 0 0 0 0

G 0 0 1 1 1 1 1

X 0 0 1 1 1 1 1

T 0 0 1 1 2 2 2

X 0 0 1 1 2 2 2

A 0 1 1 1 2 3 3

Y 0 1 1 1 2 3 3

B 0 1 1 1 2 3 4



www.rutgersqfc.com

19

Bottom Up Code



www.rutgersqfc.com

20

Runtime

O(m*n)
Huge improvement from the previous runtime of O(2^n) or more!

Better than top-down approach because there is no recursion involved (recursion 
overloads the computer stack). Also, we only need to compute this array ONCE.



www.rutgersqfc.com

21

Further Reading

• https://leetcode.com/problems/longest-common-subsequence/discuss/398711/ALL-4-
ways-Recursion-greater-Top-down-greaterBottom-Up-greater-Efficient-Solution-O(N)-
including-VIDEO-TUTORIAL

• https://leetcode.com/problems/longest-common-
subsequence/discuss/351689/JavaPython-3-Two-DP-codes-of-O(mn)-and-O(min(m-n))-
spaces-w-picture-and-analysis

https://leetcode.com/problems/longest-common-subsequence/discuss/398711/ALL-4-ways-Recursion-greater-Top-down-greaterBottom-Up-greater-Efficient-Solution-O(N)-including-VIDEO-TUTORIAL
https://leetcode.com/problems/longest-common-subsequence/discuss/351689/JavaPython-3-Two-DP-codes-of-O(mn)-and-O(min(m-n))-spaces-w-picture-and-analysis


www.rutgersqfc.com

22

Example 2: Maximum Sum Subarray

Problem: You are given an array, and you are to find the maximum sum of any 
continuous subarray

Maximum Sum Subarray is 4+(-1)+(-2)+1+5 = 7

-2 -3 4 -1 -2 1 5 -3

-2 -3 4 -1 -2 1 5 -3



www.rutgersqfc.com

23

How to solve it?

We can try to use Brute Force. That includes:

• Check all subarrays - there are O(n2) subarrays
• Find subarray with the maximum sum - it takes O(n) time to compute the sum of 

a single subarray

Altogether it takes O(n^3) to do this method.

We can do much better by using dynamic programming!



www.rutgersqfc.com

24

Dynamic Programming Method

Let dp[i] be the maximum sum of any subarray that ends at index i. How can we 
use dp[i] to calculate dp[i + 1]?

There are two cases:

1) The max-sum-subarray ending at index i + 1 includes index i:
a) dp[i + 1] = dp[i] + a[i + 1];

2) The max-sum-subarray ending at index i + 1 doesn’t include index i:
a) dp[i + 1] = a[i + 1];

Pick the higher of these two.



www.rutgersqfc.com

25

Method contd.

We will iterate through the array from beginning to end and will use two main 
variables, max_so_far and curr_max. 

The variable max_so_far will keep track of the MSS to the current point and curr_max
will keep track of the continuous segments using the method from the previous slide. 

The variable max_so_far will update based on curr_max.

Known as Kadane’s algorithm.



www.rutgersqfc.com

26

Dynamic Programming Solution

public static int maxSubArraySum(int a[], int size)

{

int max_so_far = a[0];

int curr_max = a[0];

for (int i = 1; i < size; i++)

{

curr_max = Math.max(a[i], curr_max+a[i]);

max_so_far = Math.max(max_so_far, curr_max);

}

return max_so_far;

}



www.rutgersqfc.com

27

Variable Changes

Original array

curr_max

max_so_far

-2 -3 4 -1 -2 1 5 -3

-2 -3 4 3 1 2 7 4

-2 -2 4 4 4 4 7 7



www.rutgersqfc.com

28

Running Time

Loop through each element in the array exactly once

O(n)

Significant improvement from previous runtime of O(n^3)



www.rutgersqfc.com

29

Applications

Used in a variety of fields such as:

• Aerospace Engineering
• Genetics
• Software Developing
• Economics/Finance



www.rutgersqfc.com

30

Applications Within Finance

• Create more efficient algorithms that can run on “parallel architectures”, 
thereby expanding the breadth of problems to be addressed

• Three components to create models/algorithms using dynamic programming:
• Optimization - to preserve certain mathematical features such as convexity and 

differentiability
• Approximation - to illustrate efficiency of new methods 
• Integration - to build the algorithm



www.rutgersqfc.com

31

Exercise 1: Knapsack Problem 

Given weights and values of n items, put these items in a knapsack of capacity W to 
get the maximum total value in the knapsack. In other words, given two integer 
arrays val[0..n-1] and wt[0..n-1] which represent values and weights associated with 
n items respectively. Also given an integer W which represents knapsack capacity, 
find out the maximum value subset of val[] such that sum of the weights of this 
subset is smaller than or equal to W. You cannot break an item, either pick the 
complete item, or don’t pick it (0-1 property).


