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Quick Review

The set of all possible outcomes of an experiment is called the sample
space, denoted Ω, and subsets of this set are called events, denoted ω. To
each ω ∈ Ω, we assign a probability P(Ω) such that:

Axioms
(a) For any event ω ⊂ Ω,

0 ≤ P(ω) ≤ 1

(b) P(Ω) = 1
(c) For a collection of mutually exclusive events ω1, ω2, ω3, . . . ,

P

( ∞⋃
i=1

ωi

)
=
∞∑
i=1

P(ωi )
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What is a Random Variable?

Let Ω be the sample space of an experiment. A function X : Ω→ R is
called a random variable of the experiment. If X can take on countably
many values, we say that it is discrete. If X can take on uncountably
many values, we say that it is continuous.

“function X : Ω→ R”:
This definition means that random variables are simply functions that take
in events as input and output real numbers.

Examples of Random Variables:
(a) A coin toss.
(b) The sum of the outcomes of 5 dice rolls.
(c) The height of a person picked at random from a population.
(d) The price of a given stock one hour into the future.
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Discrete Random Variables
If X is a discrete random variable, we can define the probability mass
function (p.m.f.) of X as:

fX (x) = P(X = x)

We can also define the cumulative distribution function (c.d.f.) of X
as:

FX (x) =
∑
a<x

P(a)
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Continuous Random Variables
For continuous random variables, we have to be a little more careful. First,
let’s define the probability that the random variable will output a value in
between two given values, a and b:

P(a ≤ X ≤ b) =

∫ b

a
fX (x) dx

The function fX (x) is called the probability density function (p.d.f.).
Now, we can define the cumulative distribution function (c.d.f.) of X
as: FX (x) =

∫ x
−∞ fX (x) dx
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Expected Value

The expected value of a discrete random variable X is given by:

E [X ] =
∑

x · fX (x)

Similarly, the expected value of a continuous random variable X is given by:

E [X ] =

∫ ∞
−∞

x · fX (x) dx

We can think of the expected value as a probability-weighted average. We
can think of this as the “most likely” outcome of the random variable X .
Let’s do an example.
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Expected Value of Uniform Random Variable

The p.d.f. of this random variable is:

f (x) =

{
1

b−a for x ∈ (a, b)

0 for x 6∈ (a, b)

So, since this is a continuous random variable, let’s plug this into the
formula:

E [X ] =

∫ ∞
−∞

x · fX (x) dx =

∫ b

a

x

b − a
dx

=
1

b − a
·
(
x2

2

∣∣∣b
a

)
=

1
b − a

(
b2 − a2

2

)
=

1
b − a

(
(b + a)(b − a)

2

)
=

b + a

2
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Variance of a Random Variable

If we are given a random variable X , we now know how to find E [X ],
which is essentially an “average value” for the random variable.

Now, we want to answer the question of: “If X were to output another
value, how far off would it be from the expected value?”

This is called the variance of the random variable, denoted V [X ] or σ2
X ,

and the formula for it is:

V [X ] = E
[
(X − E [X ])2

]
If we are thinking in terms of the graph for a p.d.f., the variance is a
measure of how wide the distribution is.

The quanitity σX =
√
V [X ] is called the standard deviation of X .
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Normal Random Variables

We say that a random variable X is normally distributed with mean µ
and variance σ2, denoted X ∼ N(µ, σ2), if its p.d.f. is:

f (x) =
1

σ
√
2π

exp

{
−1
2

(
x − µ
σ

)2
}

A very useful and common distribution is the standard normal distribution,

N(0, 1). This is the normal distribution centered around 0 with variance 1.
The p.d.f. of N(0, 1) is:

f (x) =
1√
2π

exp

{
−x2

2

}

Meet Patel (Quantitative Finance Club) Probability II 9 / 11



Limit Theorems

Central Limit Theorem: Let X1,X2, . . . be a sequence of independent
and identically distributed random variables, each having a mean µ and
variance σ2. Then the distribution of:

Z :=
(X1 + X2 + · · ·+ Xn − nµ)

σ
√
n

tends to N(0, 1) as n→∞.

Strong Law of Large Numbers: Let X1,X2, . . . be a sequence of
independent and identically distributed random variables, each having a
mean µ = E [Xi ] <∞. Then, as n→∞,

X1 + X2 + · · ·+ Xn

n
→ µ
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Recap

In this presentation, we used our knowledge of the fundamental laws of
probabilty to discuss random variables, the most important of which was
the normal random variable.

We defined the expected value and the variance of a random variable.

We concluded by looking at two very important “limit laws”: the Central
Limit Theorem and the Strong Law of Large Numbers.
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